On Generalized Hopf Galois Extensions
نویسندگان
چکیده
is an isomorphism, which can be interpreted as the correct algebraic formulation of the condition that the G-action of X should be free, and transitive on the fibers of the map X → Y . In many applications surjectivity of the Galois map β, which, in the commutative case, means freeness of the action of G, is obvious, or at least easy to prove (it is sufficient to find 1 ⊗ h in the image for each h in a generating set for the algebra H). It is usually much harder to decide whether β is injective. The present paper has two main topics: When does surjectivity of β already imply bijectivity? What can we conclude about the module structure of A over B, or the comodule structure of A, or general Hopf modules, over H? Both questions will be studied for more general extensions. The Kreimer-Takeuchi Theorem [16, Thm. 1.7] says that if β is onto and H is finite, then β is bijective and A is a projective B-module. This generalizes a Theorem of Grothendieck [8, III, §2, 6.1] on the actions of finite group schemes. Theorem 3.5 in [32] implies that if β is surjective and A is a relative injective H-comodule, then β is bijective and A is a faithfully flat B-module. This generalizes results of Oberst [26], and Cline, Parshall, and Scott [6] for the case where H represents a closed subgroup of an affine group scheme represented by A; in this situation the canonical map is trivially surjective, while injectivity of the H-comodule A means that the induction functor from the subgroup in question is exact.
منابع مشابه
Galois extensions for coquasi-Hopf algebras
The notions of Galois and cleft extensions are generalized for coquasi-Hopf algebras. It is shown that such an extension over a coquasi-Hopf algebra is cleft if and only if it is Galois and has the normal basis property. A Schneider type theorem ([33]) is proven for coquasi-Hopf algebras with bijective antipode. As an application, we generalize Schauenburg’s bialgebroid construction for coquasi...
متن کاملFinitary Galois Extensions over Noncommutative Bases
We study Galois extensions M (co-)H ⊂ M for H-(co)module algebras M if H is a Frobenius Hopf algebroid. The relation between the action and coaction pictures is analogous to that found in Hopf-Galois theory for finite dimensional Hopf algebras over fields. So we obtain generalizations of various classical theorems of Kreimer-Takeuchi, Doi-Takeuchi and Cohen-FischmanMontgomery. We find that the ...
متن کاملHomotopic Hopf–Galois extensions: Foundations and examples
Hopf–Galois extensions of rings generalize Galois extensions, with the coaction of a Hopf algebra replacing the action of a group. Galois extensions with respect to a group G are the Hopf–Galois extensions with respect to the dual of the group algebra of G . Rognes recently defined an analogous notion of Hopf–Galois extensions in the category of structured ring spectra, motivated by the fundame...
متن کاملHomotopic Hopf-Galois extensions of commutative differential graded algebras
This thesis is concerned with the definition and the study of properties of homotopic Hopf-Galois extensions in the category Ch 0 k of chain complexes over a field k, equipped with its projective model structure. Given a differential graded k-Hopf algebra H of finite type, we define a homotopic H-Hopf-Galois extension to be a morphism ' : B ! A of augmented H-comodule dg-k-algebras, where B is ...
متن کاملFrom Galois to Hopf Galois: Theory and Practice
Hopf Galois theory expands the classical Galois theory by considering the Galois property in terms of the action of the group algebra k[G] on K/k and then replacing it by the action of a Hopf algebra. We review the case of separable extensions where the Hopf Galois property admits a group-theoretical formulation suitable for counting and classifying, and also to perform explicit computations an...
متن کاملSemisimple Hopf Algebras and Their Depth Two Hopf Subalgebras
We prove that a depth two Hopf subalgebra K of a semisimple Hopf algebra H is normal (where the ground field k is algebraically closed of characteristic zero). This means on the one hand that a Hopf subalgebra is normal when inducing (then restricting) modules several times as opposed to one time creates no new simple constituents. This point of view was taken in the paper [13] which establishe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004